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The theory of shock dynamics in two dimensions is reformulated to treat shock 
propagation in a non-uniform medium. The analysis yields a system of hyperbolic 
equations with source terms representing the generation of disturbances on the shock 
wave as it propagates into the fluid non-uniformities. The theory is applied to 
problems involving the refraction of a plane shock wave at a free plane gaseous 
interfac,e. The ‘slow-fast ’ interface is investigated in detail, while the ‘fast-slow ’ 
interface is treated only briefly. Intrinsic to  the theory is a relationship analogous 
to Snell’s law of refraction at an interface. The theory predicts both regular and 
irregular (Mach) refraction, and a criterion is developed for the transition from one 
to the other. Quantitative results for several different shock strengths, angles of 
incidence and sound-speed ratios are presented. An analogy between shock refraction 
and the motion of a force field in unsteady one-dimensional gasdynamics is pointed 
out. Also discussed is the limiting case for a shock front to be continuous a t  the 
interfac,e. Comparison of results is made with existing experimental data, with 
transition calculations based on three-shock theory, and with the simple case of 
normal interaction. 

1. Introduction 
When a plane shock wave propagates through a non-uniform medium, the wave- 

front becomes curved and distorted, as in the diffraction and refraction of shock waves 
in turbulence and in substances of varying sound speed. Similar distortions of shock 
fronts occur even in uniform media when the fronts pass over curved boundaries, as 
in shock diffraction over a wedge. The latter problem has received considerable 
attention in the past, and it is now possible to treat diffraction over bodies with exact 
numerical calculation (Shankar, Kutler & Anderson 1978 ; Kutler & Shankar 1977), 
or with an approximate theory, known as shock dynamics, due to Whitham (1957, 
1959). This approximate theory has been extended by Collins & Chen (1970, 1971), 
to cover shock propagation in a non-uniform medium. However, their work has not 
received much attention, despite the fact that  there does not exist a method for 
calculating such flows that properly preserves the sharpness of discontinuities, other 
than the method of characteristics for fully 2- or 3-dimensional non-steady flow. 

Shock dynamics is the nonlinear analogue of geometrical acoustics. It accounts for 
the fact that  in non-uniform propagation the rays (normals to the shock front) are 
not straight and parallel. It treats the distortion of wavefronts in terms of 
disturbances which propagate transversely along the fronts. As with geometrical 
acoustics, the theory does not treat the field behind the wave fronts and therefore 
is not applicable to problems in which disturbances generated by processes behind the 
shock overtake and modify it. It differs from geometrical acoustics in that the 
disturbances may either steepen or spread out by nonlinearity, a property unique 
to finite-amplitude waves. 
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In this paper, Whitham's theory of shock dynamics is generalized to treat the effects 
on shock propagation of fluid non-uniformities in the undisturbed medium ahead of 
the shock front. The governing equations are applied to simple problems involving 
the refraction of a plane shock wave at a free plane gaseous interface, and the results 
are compared with existing experimental data. 

2. The governing equations 
2.1. Derivation of the characteristic equations 

The derivation of the equations that account for the generation and propagation of 
disturbances on the shock front follows the analysis of Whitham (1957). First, a 
relation between the shock Mach number M, the ray-tube area A and variation in 
fluid properties is obtained as in CCW theory (Chester 1954; Chisnell 1955, 1957; 
Whitham 1958) for shock propagation in a channel of slowly varying area, and, in 
this case, with slowly varying sound speed a, ahead of the shock. Since shock 
dynamics is formulated to treat only perfect gases, the changes in a, may be caused 
by spatial variations in the thermodynamic state of the fluid, or by spatial variations 
in the concentration of mixtures of perfect gases, or both. Hence, in the formulation 
of the theory it is necessary to consider imposed variations of temperature T, and 
specific heat ratio y ,  together with related variations in density p,, and of pressure 
p,, which would result if body forces were present. It is convenient to express these 
variations in terms of y ,  a, and p,. The resulting equation, which treats any spatial 
variations in the perfect gas ahead of the shock front, is 

where 

dA daLl dP dM+ - +fdy+g- + h L  = 0, 
M2- 1 A a, Po 

MA 

(2.3) 

In general, (2.1) agrees with the expression derived by Collins & Chen (1971), except 
for the coefficients of dy  and dp,, 

Next, an orthogonal system of coordinates (a, p) is introduced, where a: = constant 
are the shock fronts and ,8 = constant are the rays. Relations between shock velocity 
U and ray inclination 8 are derived from differential geometry (Whitham 1957): 

where U = a, M ,  and a,, M and CJ are functions of a and p. 
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The above equations are combined and put in characteristic form to yield the 
governing equations in the shock-based coordinate system 

where 

(2.9) 
dP dB+dw = - (F+cG)da on - = +c,  
da  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Finally, the system is transformed back to  the physical plane. The resulting 
equations are 

d y -  t a n 0 k v  
dx 1 T v t a n 0 ’  

- on the characteristics 

where 

(2.15) 

(2.16) 

The governing equations (2.14) form a hyperbolic system which describes wavelike 
disturbances that travel in opposite directions along the shock front, and carry 
information about changes of M and 0. The characteristics are real, and their slope 
dy ldx  is an increasing function of M ,  so that a disturbance carrying an increase in 
shock strength steepens, whereas a disturbance carrying a decrease in shock strength 
spreads out. When an expansive disturbance on the shock front results in a simple 
wave (expansion fan), we refer to  i t  as a shock-expansion. On the other hand, a 
compressive disturbance eventually breaks and forms a discontinuity of M and O on 
the shock front, the jump conditions across which have been given by Whitham 
(1957). The locus of this discontinuity is called a shock-shock. Physically, the 
shock-shock is the locus of the triple-shock intersection, and its occurrence signals 
the formation of a Mach stem. 

The governing equations (2.14) are similar to those obtained by Whitham (1957) 
for the case of a uniform medium ( y ,  a,, p ,  = constant), but, in general, they differ 
through the appearance of ‘source’ terms on the right-hand side. The source terms 
contain the gradients of the independent variables y , a ,  and p,. Indeed, for the 
uniform medium case, the gradients are zero and the source terms vanish, so that 
we recover the equations given by Whitham. Thus, in this formulation, disturbances 
may be generated on the shock front by boundary conditions such as wall curvature, 
as well as by non-uniformities in the medium ahead of the shock. We note that the 
source terms are implicit, since they contain the dependent variables M and 8, as 
well as the independent variables y ,  a,  and p, .  

18-2 
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FIGURE 1 .  The contact surface discontinuity: S,, S,, shock-front positions at two successive times 
t and t + & ;  I ,  interface; RT, ray tube. 

2.3. The contact discontinuity 
For shock dynamics in a non-uniform medium, one must account for the possible 
occurrence of discontinuities in fluid properties, that  is, contact discontinuities, ahead 
of the shock front. We consider an element of interface inclined at an angle 6, to  the 
x-axis, as shown in figure 1 .  To remove the x-dependence from the source terms, we 
introduce a simple rotation of the shock and the interface through an angle -aI, so 
that the interface lies parallel to the x-axis. Then a,, y and p ,  become functions of 
y only, and (2.14) reduce to 

on the characteristics dy- tans"kv 
dx - w' 

where 6, the angle between the rays of the local shock front and the interface, is given 

by s" = 8- 6,. (2.18) 

If we apply (2.17) to a pair of characteristics that  intersect a contact interface across 
which there are injinitesimal changes of sound speed da,, specific heat ratio dy and 
pressure dp,, on eliminating the terms in a, we obtain the simple result 

dU 
U 

tans"ds"= - -. (2.19) 

Then, assuming that the effects of an interface carryingjinite changes can be built 
up by summing the infinitesimal changes, (2.19) is integrated to yield 

TI 

U - = constant. 
cos e (2.20) 

Hence (2.17) provide exactly the condition required for a continuous shock front across 
such an interface, , condition that is analogous to  Snell's law of refraction. 
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By eliminating the terms in d g  from (2.17), we obtain 

(tan2g-vV2)- dM = v2[(1-g tanz6)A - da - tan2g 

M a0 

In  order to demonstrate the properties of the equations in the simplest way possible, 
we consider in the remainder of this work the case y , p ,  = constant, that is, the 
medium is a perfect gas in which only variations of temperature occur. Then the last 
two terms in (2.21) vanish and the equation reduces to  an ordinary differential 

dM v'M( U 2 - g  V 2 )  
da, U , ( V ~ - V ~ U ~ )  ' 

equation in M and a,: 
-- - (2.22) 

where C J  = a, M ,  (2.23) 

V = x- M1>, (a,  M ) 2 y .  (2.24) 

Given the shock strength and sound speed on one side of the interface, say M ,  and 
a,,, the ordinary differential equation (2.22) can be solved to yield the shock strength 
M ,  on the other side, where the sound speed is a,,. To complete the solution of the 
jump conditions across the interface, the slope of the shock front in the secondary 
region is found from (2.20). Then the final step is to  restore the shock and the interface 
to their original positions by another simple rotation through an angle +a,. 

It is interesting to consider the direction of crossing of the ray tubes at the interface. 
Figure 1 has been drawn to illustrate the results of shock refraction for the case of 
6 < S,, and shown in the figure is a ray tube consisting of a bundle of rays. For the 
case of 6 < S,, the ray tubes cross the interface from region 1 to region 2, while, for 
the case of 6 > S,, the ray tubes cross the interface in the opposite direction. L '3' ince 
the ray tubes represent the channelling of energy between rays, the direction in which 
the ray tubes cross the interface indicates the region into which the refracted shock 
is growing. When 6 = S,, the shock is normal to the interface, and the ray tubes do 
not cross the interface. This condition is identical to  that which is applied at a solid 
boundary in the analysis of shock diffraction using the theory of shock dynamics in 
a uniform medium. 

3. Shock refraction 
As a demonstration of the application of the theory, we consider problems 

involving a plane shock wave incident at some angle on a free plane gaseous interface 
across which there exists a finite difference in sound speed (Jahn 1956; Abd-el-Fattah, 
Henderson & Lozzi 1976). Two different problems are discussed. I n  the first problem, 
only a gaseous interface is present, while the second involves a solid boundary as well. 
The problems are designed to be self-similar, and they have been chosen for 
consideration because non-simple regions do not appear in the flow field. For regular 
refraction the effects of the interface are only local so, in fact, regular refraction can 
be solved exactly by three-shock theory. However, shock dynamics also predicts 
irregular refraction, so even these simple cases are interesting. 

As the first example (problem 1) we choose the simplest configuration that contains 
all the important effects; namely one in which the contact interface is wedge-shaped, 
with one of the sides aligned parallel with the undisturbed shock front and the other 
lying a t  an angle 6, with the x-axis, as shown in figure 2. S,  is the incident shock front 
and S,  is the shock front at a subsequent time after interaction with the interface. 
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FIQURE 2. Configurations for problem 1 : (a) contact surface above leading C+ characteristic; ( b )  
contact surface between leading C+ and C- characteristics; (c) contact surface below leading C- 
characteristic; S,, incident shock front; S,, shock front after interaction with interface; I ,  interface. 

The shock transmits through the vertical portion of the contact surface and refracts 
from the other. Regions 1-6 in figure 2 are uniform regions. The shock in region 2 
provides the lower boundary condition in this problem, and is calculated exactly from 
the equations of one-dimensional gasdynamics, while in regions 3-6 the shock 
conditions are calculated from the approximate theory developed here. 

I n  the second example (problem 2 )  a solid wall is introduced below the sloping 
interface, a t  an angle Sw with the x-axis, as shown in figure 3, and the boundary 
condition imposed here is that  the shock is always normal to  the wall. Regions 1 4  
are uniform and they are calculated from shock dynamics theory. 

As shown in figures 2 and 3, different cases are possible for each problem, depending 
on the position of the interface with respect to the leading C+ and C- characteristics. 
I n  problem 1 the interface may lie above the leading C+ characteristic, it  may lie 
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FIQURE 3. Configurations for problem 2: (a )  contact surface above leading (2’ characteristic; (b )  
contact surface between leading C+ characteristic and wall; S,, incident shock front: S,, shock 
front after interaction with interface; I ,  interface; W ,  wall. 

between the leading C+ and C- characteristics, or it may lie below the leading C- 
characteristic. Likewise, in problem 2 the interface may lie above the leading C+ 
characteristic, or it may lie between the leading C+ characteristic and the wall. When 
the interface lies above the leading C+ characteristic or below the leading C- 
characteristic, the steepness of the interface prevents disturbances on the shock front 
from propagating outward from the interface, and these are cases of regular 
refraction. However, in problem 1, when the interface lies between the leading C+ 
and the leading C- characteristics, or in problem 2, when it lies between the leading 
C+ characteristic and the wall, the disturbances propagate outward from the 
interface, resulting in irregular refraction. Thus shock dynamics theory for a non- 
uniform medium models both regular and irregular refraction. This is not the case 
for shock dynamics in a uniform medium, where, for the reflection of a shock by a 
solid wedge, the theory predicts a very tiny Mach stem for conditions under which 
regular reflection actually occurs (Whitham 1957). 

In order to demonstrate the quantitative behaviour of the theory, shock refraction 
has been calculated for several different values of a,, a,, a, and M ,  including 
values taken from the experiments performed by Jahn (1956), and from the 
experimental and theoretical work of Henderson’s group (Abd-el-Fattah et al. 1976 ; 
Abd-el-Fattah & Henderson 1978). The case ao2 > a,, (the ‘slow-fast ’ interaction) 
has been investigated in detail for both problems, while the case ao2 < a,, (the 
‘fast-slow’ interaction) has so far been treated only for problem 1. Typical results 
are presented in tables 1 4 .  

The problems are solved using the interface jump conditions (2.20) and (2 .22 ) ,  the 
shock-shock jump conditions, and the invariance of 8 w in the uniform regions and 
in the simple waves. For the regular-refraction cases the conditions behind the 
interface are determined directly from the known conditions ahead of the interface, 
and the remaining region is then determined from the boundary conditions. However, 
for the irregular refraction cases, since none of the conditions in the two regions 
adjacent to the interface is known a priori, it is necessary to make a guess of one 
quantity, say the Mach number M ,  ahead of the interface and then to solve the 
equations iteratively. Unless otherwise stated, the computational accuracy for M in 
these cases is better than 0.001 %. 

Although the theory of shock dynamics in a non-uniform medium is approximate 
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and provides information only about the main shock front, it  has an important 
advantage over existing methods for calculating shock refraction at a gaseous 
interface, in that  it is simple to apply and yields a unique solution. On the other hand, 
local solution of the full gasdynamics equations from three-shock theory (e.g. Taub 
1947; Polachek & Seeger 1951; Henderson 1966) yields information about the 
reflected wave as well, but, in general, there are twelve possible roots, so that i t  is 
necessary t o  develop a criterion to  determine which solution agrees best with 
experiment. This has been the source of considerable controversy. 

3.1. Problem 1 

A series of solutions for problem 1 with Ml = 5.0 and ao2/ao1 = 2-0 is given in table 1,  
and some typical cases are illustrated in figure 4. The uniform regions (1-6) are 
adjacent to simple waves (shock-expansions), or to discontinuities (shock-shocks or 
the contact surface). The shock front is continuous throughout, but the slope is 
discontinuous at the shock-shock and at the contact surface. Both the shock strength 
and slope vary continuously through the shock-xpansions. As might be expected, 
for the slow-fast interaction the theory shows the shock to be concave-forward in 
the upper part of the flow field and convex-forward in the lower part. 

For large interface angles, a regular-refraction solution is obtained, which contains 
two shock-expansions of opposite families, as shown in figure 4 ( a )  (case 2). Shock 
dynamics theory predicts transition from regular to  irregular refraction when the 
slope of the interface is equal to the slope of the characteristics in the region just 
behind the interface. This occurs when the uppermost characteristic of the shock- 
expansion between regions 3 and 4, designated here as C,+, approaches the contact 
surface, and region 3 vanishes. Then, 

(3.1) 

where 6,: is the interface angle a t  transition, and dyldx is given by (2.15), evaluated 
on C,+ (case 3). The criterion for transition from regular to irregular refraction, which 
arises naturally in this theory in terms of the slopes of the characteristics, is very 
similar to  the 'sonic' condition proposed by Hornung, Oertel & Sandeman (1979) for 
shock diffraction over a wedge. We note that, at transition, the flow deflection angle 
is greatest, and designate this angle OSt. 

Up to this point, the C+ characteristics crossing the interface originate in region 1,  
and the direction of crossing is from above to below. However, a further decrease 
in 131 results in a reversal in the direction of crossing of the C+ characteristics, which 
now originate from the corner. The C+ characteristics emerging from the interface 
are steeper than those in region 1 ,  and this results in the formation of a shock-shock 
discontinuity, which initially lies just above the interface (case 4), a t  an angle x1 with 
the x-axis. As the interface angle is decreased further, the shock-shock separates from 
the interface, as shown in figure 4 ( b )  (case 5 ) ,  and the upper shockt?xpansion becomes 
smaller, until i t  finally vanishes (case 6).  

I n  cases 4-6, and in other cases to be encountered later, a charactcristic lies just 
behind and adjacent to the interface. Under these conditions, a singularity develops 
in the expression (2.22) for dM/da,, as a, approaches ao2. It can be shown that the 
singularity is a square-root singularity, so that dMlda,  is integrable, and solutions 
exist for this range of interface angles. 

Transition from regular to irregular refraction in shock dynamics theory is 
analogous to  that which occurs in unsteady one-dimensional gasdynamics under the 
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FIGURE 4. For caption see facing page. 
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action of a moving force field or ‘leaky piston’. The force, which is a ‘source’ in 
gasdynamics, is analogous to  the contact interface, which is a ‘source’ in shock 
dynamics. As shown by Hoffman (1967), a transition occurs from a shock-free 
solution, when the force is weak and supersonic, t o  a solution containing a shock, 
when the force is subsonic. I n  our case, a steeply inclined interface corresponds to  
a supersonic force, while a gradually sloping interface corresponds to  a subsonic force. 
Hoffman showed that in an  intermediate case, analogous to  our cases 4-6, a 
characteristic in the (2, t)-plane lies adjacent to  the force and behind it,  while the 
characteristics ahead, between the force and the shock, lie a t  a finite angle to  the force. 
For this case, a square-root singularity exists at the back of the force. The appearance 
of a characteristic adjacent to and at the back of a surface of discontinuity signifies 
a sonic condltion well known in gasdynamics, a familiar example of which is the 
Chapman-Jouget detonation. The physical processes leading to this case are most 
easily understood for a force field (or contact region) or finite width (Hoffman 1967). 
Our use of the differential relation (2.22) is equivalent to treating the contact 
discontinuity as a region of finite width. 

These results show that, if the interface is steep enough, the only mechanism by 
which concave curvature (‘compressive ’ bending) can be induced on the shock is that  
provided by Snell’s law, at or within the interface. However, for smaller interface 
angles, when the refraction is irregular, convex curvature (‘expansive ’ bending) 
occurs a t  the interface, presumably because too much compressive bending occurs 
a t  the shock-shock. For very small interface angles, the shock-shock may be 
sufficiently weak that the interface once again becomes compressive, as shown below 
in case 9. The interpretation of shock refraction in these terms yields some additional 
insight to the rather startling solutions in one-dimensional gasdynamics put forward 
by Hoffman. 

It is also interesting to note that there exists a finite range of interface angles (0.7’ 
in this instance, between cases 3 and 4) in which no solution could be obtained for 
the irregular refraction case. It appears that  this difficulty is associated with the 
formation of the shock-shock on the interface, and a similar difficulty occurs 
whenever a shock-shock lies on or immediately adjacent to the interface. 

Shown in figure 4 ( c )  is the geometry of a simple irregular refraction, after the upper 
shock-expansion has vanished (case 7). As the interface angle continues to decrease, 
the shock front becomes normal to  the interface (case 8) and then reverses curvature 
(case 9) from convex-forward a t  the interface to  concave-forward. For case 8, in which 
we designate the interface angle as SI,, we note that the shock fronts on both sides 
of the interface are normal to  the interface, so that the ray tubes do not cross the 
interface. I n  other words, there is no transfer of energy across the interface, as 
discussed in $2.2. This case is identical with the diffraction of a shock by a solid 
wedge of angle S,,. 

For a further decrease in the slope of the interface, a second transition angle SIi 
is reached when the uppermost characteristic of the lower shock-expansion Cc 
approaches the contact surface, and region 4 vanishes, that  is, 

a,, = arctan(g)l , 
c; 

FIGURE 4. Solutions for problem 1 with M ,  = 5 0  and uo2/uol = 2.0: ( a )  regular refraction, 6, = 600’ 
(case 2); ( b )  irregular refraction, 6, = 450’ (case 5); (c) irregular refraction, 6, = 300’ (case 7 ) ;  (d) 
irregular refraction, 6, = 0’ (case 12); ( e )  regular refraction, 6, = -450’ (case 14); S, shock front; 
I ,  interface; SE’, shock-expansion ; SS, shock-shock. 
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where dyldx is evaluated on C; (case 10). For 6, < SIC, the behaviour of the C- 
characteristics is similar to  the behaviour of the Cf characteristics for 6, < S,;. The 
C- characteristics that  cross the interface now originate from the corner, instead of 
originating in region 1 as before, and the direction of crossing is now from below to 
above. The steepness of the C- characteristics emerging from the interface results in 
the formation of a second shock-shock, which initially lies just above the interface 
(case l l ) ,  a t  an angle xz with the x-axis. As shown in figure 4 ( d )  (case 12), the 
shock-shock separates from the interface as the interface angle is decreased, and the 
lower shock-expansion becomes smaller, until it  finally vanishes (case 13). 

At this point (case 13), the interface lies on the leading C- characteristic. When 
the interface lies below this characteristic, no information about the corner can 
propagate outward along the shock from the interface, so that the shock refraction 
at the interface becomes locally regular. A typical example is shown in figure 4 ( e )  
(case 14), in which we see that two shock-shocks of opposite families are present, but 
no shock-expansions. 

This behaviour continues as the interface moves down toward the vertical. Both 
shock-shocks weaken, and as expected the shock front straightens out and its 
strength tends to  the undisturbed value of M , .  However, in region 6, where the shock 
front has passed through two interfaces, the recovery is incomplete, and this may 
be attributed to reflection losses a t  each of the two interactions. 

The solutions for this problem that involve two shock-expansions or two shock- 
shocks of opposite families are unusual, especially the latter, in which both the 
shock-shocks share a common Mach stem. Such solutions are the result of the unique 
properties of the characteristics in shock dynamics. It will be interesting to  compare 
these predicted solutions with actual experimental results, when such results become 
available. 

Before leaving this problem, we note that, although we have been considering the 
slow-fast interface, the preceding results embody the form of the solutions for the 
fast-slow interface as well. For the fast-slow interface we have a,, < a,,, M ,  > M ,  
and U z  < U,,  so that by interchanging region 1 with region 2 we get a,, > a,,, 
M ,  < M ,  and IT, > U,,  which are exactly the boundary conditions for the slow-fast 
interface. Of course to get the detailed results for the fastrslow case, i t  is necessary 
to determine M ,  at the vertical part of the interface, and then to  solve for the various 
regions as before. 

3.2. Problem 2 
Given in table 2 and shown in figures 5 and 6 are some typical results for problem 2. 
For any given incident shock strength and sound-speed ratio, two different 
sequences of solutions are obtained, depending on the wall angle 6,. We note from 
the transition condition in problem 1 (case 3) that ,  when the interface angle is 6,,+, 
the flow deflection for regular refraction is maximum (03t), and that,  in order to obtain 
a larger deflection, the flow adjusts itself by becoming irregular. Hence, for problem 2, 
in which a wall is present below the interface, if 6, > O,,, for 6, decreasing from 
9O0, i t  might be expected that the solution will become irregular before 6, reaches 
a,,+. Indeed, for Sw < 03t, transition from regular to irregular refraction occurs a t  
6, = if,,+, whereas for 6, > 03t, i t  occurs earlier and, as a consequence, there are two 
sequences to be considered. An interesting third sequence is obtained by keeping the 
interface and wall angles fixed, and observing the effects of reducing the incident 
shock strength. 
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FIGURE 5. Solutions for problem 2 with M ,  = 5.0, a,,/a,, = 2.0 and 8, = 15.0': (a) regular 
refraction, 6, = 65.0' (case 16): ( b )  regular refraction, 8, = 600' (case 18)': (c) irregular refraction, 
8, = 30.0' (case 23) ; S ,  shock front; I ,  interface ; W ,  wall ; SE, shock-expansion ; SS, shock-shock. 

In  the first and second sequences, we set M ,  = 5-0 and uo2/ao1 = 2.0. For large 
interface angles and small wall slopes (8, c B3t) ,  a shock-shock lies below the 
interface, as shown in figure 5 ( a )  (case 16). As the interface angle is decreased, the 
shock-shock weakens, degenerates to a G+ characteristic (case 17), and is converted 
into a shock-expansion as shown in figure 5 ( b )  (case 18). The transition from the 
shock-shock to the shock+xpansion results in regions 3 and 3 becoming identical 
(case 17), and corresponds to a zero contribution from the corner signal, referred to 
by Jahn (1956). In figure 5 ( u )  (case 16) the corner signal is a net compression, while 
in figure 5 ( b )  (case 18) it is a net rarefaction. 
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Case 

16 
17 
18 
19 
20 
21 
22 
23 

Case 

24 
25 
26 
27 

Case 

28 
29 
30 
31 

Case 

32 
33 
34 
35 
36 
37 
38 

6, 
65.0' 
62.9' 
60.0' 
557' 
550' 
450' 
382' 
300' 

81 
600' 
57.8' 
57.3' 
500' 

6, 
750' 
642' 
63.9' 
6 1 .Oo 

Ml 
5 0  
4.0 
3.0 
2.0 
1.8 
1.78 
1.77 

ao2/ao1 = 2.0, M ,  = 5.0 and 6, = 150' 

M2 8 2  M3 83 M4 
3.65 13.1' 370 150' - 

3.68 150' 368 150' - 
3.73 183' 3.64 150' - 

(4.07) (32.2') 3,57 15.0' - 

- - 3.53 15-0' (8.71) 
- - 3.25 15.0' 7.44 

3.15 15.0' 6.84 
3.05 150' 6.3 1 

- - 

- - 

ao,/ao, = 2.0, M ,  = 50 and 6, = 450' 

M2 @2 M3 03 M4 
373 183' 4.64 450" - 

(3.81) (22.0') 4.58 450' - 

- - 4.52 45.0' (9.25) 
- - 4.10 45.0' 8.22 

ao2/aol = 2.0, Ml = 5.0 and 6, = 600' 

M2 82 3f3 83 M4 
3.58 68' 6.34 60.0' - 

(3.66) ( 13.7') 5.74 60.0' - 
- - 5.67 60.0' (11.36) 
- - 536 600' 1072 

ao2/ao1 = 2.0, 6, = 30.0' and 6, = 0' 

M2 8 2  M3 03 M4 
- - 2.75 0' 6.29 
- - 2.21 0' 505 
- - 1.67 0" 3.80 
- 1.14 0' 2.53 
- - 1.05 0" 2.27 

1.04 0' 2.24 
- - 1.04 0' 2.23 

- 

- - 

~ 

TABLE 2. Summary of calculated refraction parameters for problem 2 

Values in parentheses denote vanishingly small regions. 

84 
- 

- 
- 

- 
(52.3') 
42.5' 
358' 
280' 

8 4  
- 
- 

(55.2') 
491' 

84 
- 

- 
(63.1') 
6 1.2' 

84 
27.72' 
28.14' 
28.81' 
29.79' 
29.96' 
2998' 
2999' 

X 
37.5' 

(38.5') 
- 

- 
55.0' 
48.0' 
43.7' 
38.9' 

X 
563' 
57.8' 
57.3' 
52%' 

X 
62.4' 
642' 
63.9' 
62.2' 

X 
38.7' 
38.9' 
390' 
38.6' 
38.3' 
38.2' 
38.2' 

S 

W 

FIGURE 6. Irregular-refraction solution for problem 2 with M ,  = 2.0, ao2/ao1 = 2.0, 6, = 0' and 
6, = 300' (case 35): S, shock front ;  I ,  interface; W ,  wall; SE,  shock-expansion; SS, shock-shock. 
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As the interface angle is decreased further, the shock-expansion grows in size and 
strength until its upper C+ characteristic lies adjacent to the interface (case 19). A 
further decrease in the interface angle results in the formation of a shock-shock just 
above the interface, that  is, irregular refraction (case 201, and, as the interface angle 
becomes even smaller, the shock-shock separates from the interface (case 21), the 
shock-expansion vanishes (case 22) and. finally, a simple irregular refraction results, 
as shown in figure 5 ( c )  (case 23). I n  the limit, as the interface collapses onto the wedge 
(6, + Sw), the problem reduces to that of the irregular reflection of a shock by a wedge. 

The second sequence of solutions occurs when the wall angle is large (6, > 03t). 
For large interface angles, as before, a shock-shock lies below the interface, between 
regions 2 and 3 (case 24). However, as the interface angle is decreased, the shock-shock 
moves towards the interface (case 25), crosses i t  (case 26), and moves out into the 
primary medium, resulting in a simple irregular-refraction result (case 27). The 
shock-shock is not converted into a shock-expansion, and the corner signal is 
compressive for all interface angles. I n  view of the fact that  the order of crossing of 
the interface and the shock-shock by the C- characteristics is reversed when the 
shock-shock passes through the interface (cases 25 and 26), i t  is remarkable that the 
conditions in region 3 nevertheless show the expected trend. 

The larger the wall angle, the nearer the shock-shock remains to the wall for all 
interface angles (cases 28-31). Each of these solutions contains a tiny Mach stem, 
either a t  the wall (cases 28 and 29), or at the interface, when i t  is near the wall (cases 
30 and 31). The Mach stem is the result of the boundary condition applied a t  the 
wall, and i t  is present even though the angles involved are large enough that the 
solutions should be regular. Thus, even in the limiting cases of 6, = 90° and 6, = S,, 
our solution predicts the presence of a tiny Mach stem a t  the wall, instead of 
giving a regular-refraction result. 

In  the third sequence we set S, = 30-0' and 6, = Oo (cases 32-38). As the incident 
shock strength is reduced, the strength of the shock at the wall M3 tends to unity, 
and the shock front in region 4 becomes normal to  the interface, as shown in figure 6 
(case 35). It appears that  both these limits are reached simultaneously, which is 
not surprising, since the conditions at the interface are influenced by the conditions 
a t  the wall. Physically, as the limit is approached, the shock+xpansion behind the 
interface, which has been expanding downwards, fills the secondary medium entirely, 
and in the limit the ray tubes in region 4 do not cross the interface. If the incident 
shock strength were to  be reduced or, alternatively, if the interface angle were to  be 
decreased, the shock-expansion would have to  expand further. This is not possible, 
and, since the expansion cannot be discontinuous, i t  appears that  this situation is the 
limiting case for which the equations a t  the interface, (2.20) and (2.22), and the 
boundary conditions can be satisfied simultaneously. This can be interpreted to mean 
that, beyond this limit, the shock front should no longer be continuous across the 
interface. It has been observed experimentally that this situation leads to the 
formation of a precursor wave, that  is, a discontinuous shock front a t  the interface, 
as discussed in $4. 

The essential difference between the case of a normal shock at the interface for 
problem 1 (case 8), and the limiting case of a normal shock here, lies in the behaviour 
of the ray tubes. I n  problem 1 a portion of the shock front is present below the sloping 
part of the interface, having been transmitted through the vertical part, so that, as 
the interface angle passes through &,, the direction in which the ray tubes cross the 
interface is simply reversed. However, in the case of problem 2 the portion of the 
shock front below the interface comes only from the ray tubes that cross the interface 
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Regular refraction 

Case 4 
39 62" 
40 47" 
41 66" 
42 27O 
43 41" 
44 32" 

Theoretical Experimental 
Ml a02/a01 f4 03 

1.073 1.289 90" 7" 
1.073 1.289 19.1° 1 9" 
1.073 0780 - 5.3" - 5 O  

1.07 3 0780 - 193" - 19" 
1.732 0780 - 11.3" -11" 
1.732 0780 - 15.8" - 15" 

Irregular refraction - problem 2 
Theoretical Experimental 

Case 81 8, Ml a02la0, J f 3  X M3 X 
45 35" 25" 1.732 1.289 1.70 39.5" 1.69 37" 
46 15" 1" 1-073 1-289 1 .oo 26.7" 1 .oo 21" 

TABLE 3. Calculated and measured refraction parameters based on settings used by Jahn 

from above. Thus, when the shock becomes normal to the interface, i t  appears that 
no further solution is possible by shock dynamics theory. 

It is worth noting that, for the special case of the horizontal wall (6, = O O ) ,  by 
considering the wall to be an axis of symmetry one obtains the solution to the 
double-wedge problem, in which both faces of the gaseous wedge are inclined at equal 
angles to  the undisturbed rays of the incident shock wave. 

4. Comparison with experiment and theory 
4.1. Comparison with experimental results 

4.1.1. Jahn's results. Jahn (1956) publishedexperimental results on shock refraction 
a t  a plane gaseous interface. He used gas combinations of air-methane and 
air/carbon dioxide, and the gases were prevented from mixing a t  the interface by a 
very thin plastic membrane. The results of computations based on the settings used 
in his experiments are presented in table 3, together with the experimental results 
that  were measured from his published photographs. For the regular-refraction case, 
according to  shock dynamics theory, the conditions in region 3 are determined solely 
from the conditions in region 1 ,  so that the comparison with experiment is only local. 
For the irregular-refraction case, however, the conditions a t  the interface are 
influenced by the presence of the wall, so that i t  is necessary to consider the whole 
flow field. 

In  order to  locate the shock-shock in the photographs, the position of the corner 
had to be determined by extending the lines along the interface and the wall upstream 
until they intersected. Since the angle between the interface and the wall is small in 
both cases 45 and 46, this introduces a possible error in the measured value for 2. 
Further, in all four cases the ratio y2/y1 is approximately 0.93, whereas in the 
computations y2/y1 has been taken to be unity. Nevertheless, it  is seen from the table 
that the calculated values compare favourably with the values measured from the 
photographs. 

Case 46, which is based on figure 14(e) of Jahn's paper, requires special comment. 
The experimental result has a discontinuous main shock front and a precursor wave 
at the interface. Shock dynamics, however, attempts to find a solution in which the 
main shock front is continuous across the interface. The solution for this case does 
not converge to within the specified tolerance, and the computational accuracy is only 



Shock dynamics in non-uniform media 

90 - 

80 - 

70 - 
60 - 

('4 

so - 

40 - 

30 - 

20 - 

10 - 

0 

0 5 10 1s 20 2s 

oi-ic 

) 

PR 
--c 

I 
30 : 

555 

FIQURE 7 .  Transmitted shock wave angle wt versus incident shock wave angle wi for refraction of 
a plane shock a t  a contaminated carbon dioxide/helium interface: 0,  present theory; $, 
experimental results (regular refraction) ; , experimental results (irregular refraction) ; -, best-fit 
curves of Abd-el-Fattah et al. for the experimental data;  RR, regular refraction; ZR, irregular 
refraction ; PR, precursor irregular refraction. 

1 % , indicating that the equations and the boundary conditions cannot be satisfied 
simultaneously. This is consistent with the experimental result that, under these 
conditions, the shock front is not continuous a t  the interface. 

4.1.2. Abd-el-Fattah, Henderson & Lozzi's results. Abd-el-Fattah et al. (1976) have 
performed a series of experiments on shock refraction using a set-up similar to that 
of Jahn. I n  order to obtain as large a sound-speed ratio as possible, they used a carbon 
dioxide/helium gas combination across the interface. They observed that the gases 
leaked through the membrane, and, using a gas analyser, they record that, a t  the 
time the shock tube was fired, the carbon dioxide was about 95 % pure'(5 % by volume 
helium) and the helium was about 90 % pure (10 % by volume carbon dioxide). 

Shown in figure 7, which is reproduced from Abd-el-Fattah et al., is the observed 
transmitted shock wave angle wt versus the incident shock wave angle wi. The wave 
angles wi and w, are related t o  our notation 

wi = 9O0-S1, (4.1) 

where 0, is the ray angle of the transmitted shock front a t  the interface. 
The results of our calculations have been entered in the figure. These calculations 

are based on a contaminated carbon dioxide/helium interface, across which 
uo2/ao1 = 2-53, but we have taken the ratio y2/y1 across the interface to be unity, 
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instead of using the actual value of 1.22. Further, it  has been assumed that the back 
plate is in line with the front plate, that  is, 8, = 0'. Agreement with the experimental 
results is very good, and over the whole range of incident wave angles, from wi = 0' 
through transition, the present theory provides a much better model than either the 
Snell-piston theory or the piston-diaphragm theory of Abd-el-Fattah et al. (1976). 
We find that transition from regular to irregular refraction occurs at wi = 22.7', which 
compares with wi = 23.12' at transition from the three-shock theory, discussed in 
$4.2. 

Over the range 22.7' < wi < 27*6O, the refraction is irregular and a shock-shock lies 
above the interface. (Between wi = 22.7' and wi = 24.0', no solution could be 
obtained, for reasons that are given in $3.1). The angle 2 between the shock-shock 
and the interface is small, reaching a maximum value of 0.25' a t  wi = 27*6', which 
would explain why the shock-shock and the Mach stem are hardly discernible from 
the interface in figure 13 (plate 3) of Abd-el-Fattah et al. Further, the transmitted 
shock wave angle at the interface changes from wt = 73.6' at wi = 24.0' (transition), 
to wt = 76.4' at wi = 27*6', and does not approach the experimentally observed value 
of wt = 93.0' for large incident wave angles. The reason for this discrepancy is that 
the solution according to shock dynamics theory is constrained to predict a shock 
front that is continuous throughout, whereas the experiments show a discontinuous 
shock front a t  the interface. 

This range of incident wave angles corresponds to the bound-precursor range 
discussed by Abd-el-Fattah et al. Their photographs show that, in this range, the 
transmitted wave is slightly ahead of the incident wave a t  the interface. Although 
their results were not conclusive, they noticed, however, that  both the incident and 
transmitted shock fronts had the same, or very nearly the same, velocity along the 
interface, and they inferred that the discontinuity of the shock front a t  the interface 
is the result of some non-pseudostationary process a t  the corner. Perhaps, if the 
secondary effects of the corner could be eliminated completely (i.e. if the back plate 
were to be aligned perfectly with the front plate with no gap between them) then 
the bound-precursor irregular-refraction result would indeed reduce to a simple 
irregular-refraction result. 

For wi > 27*6', shock dynamics theory does not yield any solution. As discussed 
in $3.2, this is because, as the incident wave angle approaches the limit of wi = 27*6', 
the shock+xpansion behind the interface fills the entire region, and, at the same 
time, the shock front a t  the interface becomes normal to the interface, so that no 
ray tubes cross the interface. This range of incident wave angles corresponds to  the 
free-precursor result discussed by Abd-el-Fattah et al. in which the velocity V, of the 
precursor (transmitted wave) is greater than the velocity of the incident shock 
along the interface. In  their paper they determine the incident wave angle for the 
second transition, that is, the transition to the free-precursor result, to be wi = 28.8' 
or 27.4', depending on whether or not the membrane inertia is considered. These 
values compare very favourably with our result of 27-6'. 

4.1.3. Abd-el-Fattah & Henderson's results. In  a subsequent paper, Abd-el-Fattah 
& Henderson (1978) studied shock-wave interactions a t  a carbon dioxide/methane 
interface. They used three different incident shock strengths, namely MI = 1.118, 
1.336 and 2-243, which they classified as the very weak group, the weak group and 
the strong group respectively. In  general, for each of the three groups, at small wave 
angles, the refraction was regular. This was followed by bound-precursor irregular 
refraction for larger wave angles and by various types of free-precursor irregular 
refractions at very large wave angles. These results are qualitatively the same as those 
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discussed in $4.1.2, except for the occurrence of the different kinds of irregular 
refraction in the free-precursor range. 

For the very weak group, the agreement between Abd-el-Fattah & Henderson's 
experimental results and our shock dynamics computations is very good, especially 
for the regular-refraction range, and the limits of their bound-precursor range 
correspond almost exactly to the limits of our irregular-refraction range. However, 
for the weak group and the strong group, good agreement is obtained only in the 
regular-refraction range. For the weak group, we find that the irregular-refraction 
range extends from transition a t  an interface angle of 53.2' to an interface angle of 
29O, whereas Abd-el-Fattah & Henderson indicate that the bound-precursor range 
extends from transition at an interface angle of about 53' to an interface angle of 
about 44' only. For the strong group, shock dynamics predicts irregular refraction 
from transition a t  6, = 51.6' through to 6, = Oo, that  is, until the interface lies on 
the wall. On the other hand, Abci-el-Fattah & Henderson give a bound-precursor 
result in the range 49.7' > 6, > 33.4', and for interface angles smaller than 33.4' 
their observations indicate a free-precursor result. 

Despite the poor agreement between the limits for the ranges of Abd-el-Fattah & 
Henderson's bound-precursor refraction results and our irregular-refraction results, 
it is interesting to note that their trajectory path angles of the shock-wave 
confluences, x1 and xz, show satisfactory agreement with our shock-shock angle. This 
appears to indicate that the general forms of the shock refraction in both the 
experiment and the theory are the same, and suggests that  the various bound-precursor 
results observed may have been caused by the experimental set-up. 

The reason for these discrepancies is not clear a t  this time. As Abd-el-Fattah & 
Henderson have pointed out, their results do not agree entirely with the results 
obtained by Jahn (1956), and in particular they do not record any cases of irregular 
refraction in which the transmitted wave is continuous with the Mach stem, as shown 
in Jahn's figure 14(c). Their experimental results also indicate that for large wave 
angles, that  is, for small interface angles, a corner signal attenuates the reflected wave 
at the three-shock confluence. As mentioned in $4.1.2, this corner signal may be a 
result of the experimental set-up. It appears that  further analysis will be required 
when more experimental data becomes available. 

4.2. Comparison with three-shock theory 
Abd-el-Fattah et al. (1976) have computed the transition angles for refraction of a 
plane shock a t  a pure carbon dioxide/helium interface as a function of the incident 
shock strength. They use a method developed by Henderson (1966), based on the 
behaviour of three shock waves meeting a t  a point, in which the full equations of 
motion are applied to the local shock geometry a t  the interaction point on the 
interface, and are solved graphically in the hodograph plane using the shock polar 
method. Their results are shown by the solid line in figure 8, which is reproduced from 
their paper, where the variable T~ is 

(4.4) 

The results of the present theory have been entered as data points in the figure. It 
is seen that, for Mach numbers below 3, the agreement is very good, Again, for 
simplicity, we have taken the ratio y2/y1 across the interface to  be unity, instead of 
using the actual value of 1.28. 
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Incident wave angle wi 

FIGURE 8. Transition angles for refraction of a plane shock at a pure carbon dioxide/helium 
interface: Q, present theory; -, results of Abd-el-Fattah et al. 

Case Jfl ao2/ao1 Mz 4 M3 0 3  

1 7  1.5 1.5 1.39 O0 1.40 O0 
48 1.5 5 0  1.15 O0 1 -20 O0 
49 ii.0 1.5 4.03 O0 408 O0 
50 5 0  5.0 2.09 O0 242  O0 

TABLE 4. Calculated refraction parameters for normal interaction 

4.3. Normal interaction 
An inkresting check of the accuracy of the theory can be made in the case of problem 1 
with 6, = 90°, for which the shock interacts normally with the interface (table 4). 
Since the transmitted wave in region 2 is calculated exactly in this analysis from the 
one-dimensional gasdynamics equations, while the transmitted wave in region 3 is 
calculated approximately by shock dynamics theory, the departure of M3 from M ,  
and of 8, from 0 provide a measure of the accuracy of the theory. It is seen that the 
theory shows reasonable agreement, although the accuracy decreases as the ratio 
ao2/ao1 increases, as might have been expected. The results of a more complete 
analysis of this case are depicted in figure 9, in which the error c is defined by 
6 = ( M 3 - M 2 ) / M 2 .  

5. Summary and conclusions 
I n  this paper, Whitham's theory of shock dynamics has been reformulated to 

account for imposed non-uniformi ties in the undisturbed medium ahead of the shock 
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FIGURE 9. Relative error between the results from shock dynamics and the results from 
one-dimensional gasdynamics for normal interaction, 6, = 90°. 

front. The governing equations are hyperbolic in nature. When compared with the 
conventional shock dynamics equations for a uniform medium, the essential difference 
is the appearance of source terms, which represent disturbances generated on the 
shock front as the shock propagates into regions where the fluid properties are 
non-uniform. 

As in the case of a uniform medium, discontinuities of shock strength M and slope 
f? can occur in the form of shock-shocks, which are the manifestation of the triple-shock 
intersections in Mach reflection. However, the presence of a contact surfacs, across 
which there exists an imposed change in fluid properties, introduces another kind of 
discontinuity in the shock front. Jump conditions across the interface are developed 
from the characteristic equations, and the theory naturally provides a relationship 
analogous to Snell's law. The shock dynamics equations governing shock refraction 
at  a gaseous interface are simple to apply and yield a unique solution. By changing 
various parameters such as the incident shock strength, the fluid property ratios 
across the interface, and the interface angle, a large variety of interesting configura- 
tions are easily obtained. These features give the present theory its greatest appeal 
over existing methods for calculating shock refraction. 

The theory models both regular refraction and irregular refraction, and also 
predicts the transition from one to the other. This is in contrast with the diffraction 
of shock waves in a uniform medium over solid wedges, where the theory only models 
irregular refraction. Transition from regular t o  irregular refraction in shock dynamics 
theory is analogous to the transition which occurs in unsteady one-dimensional 
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gasdynamics under the action of a moving force field or ‘leaky piston’, in which the 
solution changes from one that is shock-free for a supersonic force to one that contains 
a shock for a subsonic force. I n  both problems, a sonic configuration occurs that is 
analogous to  Chapman-Jouget detonation. 

For irregular refraction, given an  incident shock strength and fluid property ratio, 
there exists an interface angle a t  which the Mach stem is normal to the interface, 
SO that  no rays cross the interface. This is the condition for no energy flow across 
the interface, and i t  is the same condition that is applied a t  a solid boundary in the 
analysis of shock diffraction using the theory of shock dynamics in a uniform medium. 

I n  the neighbourhood of a solid boundary, under certain conditions, a limiting 
irregular case is obtained, in which the Mach stem becomes normal to the interface, 
and the Mach number of the shock front at the wall tends to  unity. It appears that 
this signals the onset of a discontinuous shock front a t  the interface, namely the 
formation of a precursor wave, 

It has been implicitly assumed, through the application of the characteristic rule, 
that  modifying disturbances overtaking the main shock front are excluded. Further, 
as pointed out by Whitham (1957), the theory tends to overconcentrate the 
disturbances on the shock front. For strong shocks this representation is satisfactory, 
but for weak shocks the true disturbance is distributed over a larger region than 
predicted by the theory. I n  spite of these factors, i t  appears that  the calculated shock 
parameters compare favourably with the limited experimental data available. In  
particular, the calculated wave angles for the transmitted shock in regular refraction 
show very good agreement with experiment, while the calculated angles for transition 
from regular to irregular refraction agree well with the predictions from three-shock 
theory. 

Future work will be directed a t  investigating problems involving the fast-slow 
gaseous interface, and also a t  examining shock refraction problems in which the 
variation of fluid properties is continuous. 

The authors are grateful to  Professor G. B. Whitham for drawing their attention 
to the analogy between a contact discontinuity in shock dynamics and a moving force 
in unsteady gasdynamics. This work was supported by the National Science 
Foundation under Grant CME-7822089. 

REFERENCES 

ABD-EL-FATTAH, A. M. & HENDERSON, L. F. 1978 Shock waves at a slow-fast gas interface. J. 

ABD-EL-FATTAH, A. M., HENDERSON, L. F. & LOZZI, A. 1976 Precursor shock waves at a slow-fast 

CHESTER, W. 1954 The quasi-cylindrical shock tube. Phil. Mag. 45 (7), 1293-1301. 
CHISNELL, R.  F. 1955 The normal motion of a shock wave through a non-uniform one-dimensional 

medium. Proc. R. SOC. Lond. A232, 350-370. 
CHISNELL, R.  F. 1957 The motion of a shock wave in a channel, with applications to cylindrical 

and spherical shock waves. J. Fluid Mech. 2, 286-298. 
COLLINS, R. & CHEN, H. T. 1970 Propagation of a shock wave of arbitrary strength in two half 

planes containing a free surface. J. Comp. Phys. 5 ,  415-422. 
COLLINS, R. & CHEN, H.  T. 1971 Motion of a shock wave through a non-uniform fluid. In Proc. 

2nd Int. Conf. on Numerical Methods in Fluid Dynamics (ed. M. Holt). Lecture Notes in Physics, 
vol. 8, pp. 264-269. Springer. 

Fluid Mech. 89, 79-95. 

gas interface. J. Fluid Mech. 76, 157-176. 



Shock dynamics in non-uniform media 561 

HENDERSON, L. F. 1966 The refraction of a plane shock wave a t  a gas interface. J .  Fluid Mech. 

HOFFMAN, A. L. 1967 A single-fluid model for shock formation in MHD shock tubes. J .  Plasma 

HORNUNQ, H .  G., OERTEL, H .  & SANDEMAN, R. J. 1979 Transition to Mach reflection of shock 
waves in steady and pseudosteady flow with and without relaxation. J .  Fluid Mech. 90,541-560. 

JAHN, R.  G. 1956 The refraction of shock waves at a gaseous interface. J .  Fluid Mech. 1,457-489. 
KUTLER, P.  & SHANKAR, V. 1977 Diffraction of a shock wave by a compression corner: part 

POLACHEK, H.  & SEEQER, R. J. 1951 On shock-wave phenomena; refraction of shock waves a t  

SHANKAR, V., KUTLER, P. & ANDERSON, D. 1978 Diffraction of a shock wave by a compression 

TAUB, A. H.  1947 Refraction of plane shock waves. Phys. Rev. 72, 51-60. 
WHITHAM, G. B. 1957 A new approach to problems of shock dynamics. Part 1 .  Two-dimensional 

WHITHAM, G. B. 1958 On the propagation of shock waves through regions of non-uniform area 

WHITHAM, G. B. 1959 A new approach to problems of shock dynamics. Part 2. Three-dimensional 

26, 607-637. 

Phys. 1, 193-207. 

I1 -single Mach reflection. A.I.A.A. J .  15, 197-203. 

a gaseous interface. Phys. Rev. 84, 922-929. 

corner: part I - regular refraction. A.I.A.A.  J .  16, 4-5. 

problems. J .  Fluid Mech. 2, 145-171. 

or flow. J .  Fluid Mech. 4, 337-360. 

problems. J .  Fluid Mech. 5,  369-386. 


